Anglister L, Cherniak M and Lev-Tov A. Ascending pathways that mediate cholinergic modulation of lumbar motor activity. J. Neurochemistry, 142 (suppl. 2):82-89, 2017 .

Cherniak M , Anglister L and Lev-Tov A. Shaping the output of lumbar flexor-motoneurons by sacral neuronal networks. J. Neuroscience, 37:1294-1311, 2017 .

Cherniak M, Etlin A, Strauss I, Anglister L and Lev-Tov A. The sacral networks and neural pathways used to elicit lumbar motor rhythm in the rodent spinal cord. Front. Neural Circuits 8:143. doi: 10.3389/fncir.2014.00143, 2014.

Hadas Y, Etlin A, Falk H, Avraham O, Kobiler O, Panet A, Lev-Tov A, Klar A. A 'tool box' for deciphering neuronal circuits in the developing chick spinal cord. Nucleic Acids Res. 42(19):e148. doi: 10.1093/nar/gku750, 2014.

Etlin A, Finkel E, Cherniak M, Lev-Tov A, Anglister L The Motor Output of Hindlimb Innervating Segments of the Spinal Cord is Modulated by Cholinergic Activation of Rostrally Projecting Sacral Relay Neurons. J. Mol. Neurosci. 53:517-524, 2014.

Finkel E, Etlin A, Cherniak M, Mor Y, Lev-Tov A, and Anglister L The neuroanatomical basis for cholinergic modulation of locomotor networks by sacral relay neurons with ascending lumbar projections. J. Comp. Neurol. 522:3437-5, 2014.

Etlin A, Finkel E, Mor Y, O'Donovan MJ, Anglister L, and Lev-Tov A Characterization of sacral interneurons that mediate activation of locomotor pattern generators by sacrocaudal afferent input. J. Neuroscience, 33:734-747, 2013.

Etlin A, Blivis D Ben-Zwi M and Lev-Tov A Long and short multifunicular projections of sacral neurons are activated by sensory input to produce locomotor activity in the absence of supraspinal control. J. Neuroscience, 30:10324-10336, 2010.

Lev-Tov A, Etlin A, Blivis D Sensory induced activation of pattern generators in the absence of supraspinal control. Ann N Y Acad Sci., 1198:54-62, 2010.

Lev-Tov, A and O'Donovan , MJ, Spinal cord: neonatal circuits. In Larry R. Squire, Editor-in-Chief, Encyclopedia of Neuroscience, Academic Press, Oxford, 2009.

Anglister L, Etlin A, Finkel E, Durrant AR, Lev-Tov A. Cholinesterases in development and disease. Chem Biol Interact. 175:92-100, 2008.

Mor Y and Lev-Tov A. Analysis of rhythmic patterns produced by spinal neural networks. J. Neurophysiol. 98: 2807-2817, 2007.

Blivis D Mentis G. Z, O'Donovan, M.J and Lev-Tov A. Differential effects of opioids on sacrocaudal afferent pathways and central pattern generators in the neonatal rat spinal cord. J. Neurophysiol. 97:2875-2886, 2007.

Gabbay H. and Lev-Tov, A. Alpha-1 adrenoceptor agonists generate a "fast" NMDA-receptor independent motor rhythm in the neonatal rat spinal cord. J. Neurophysiol. 92:997-1010, 2004.

Strauss, I. and Lev-Tov, A. Neural pathways between sacrocaudal afferents and lumbar pattern generators in neonatal rats. J. Neurophysiol. 89:773-784, 2003.

Levanon, D., Bettoun, D. Harris-Ceruti, C., Woolf, E., Negreanu, V., Eilam, R., Bernstein, Y., Goldenberg, D., Xiao, C., Fliegauf, M., Kremer, E., Otto, F., Brenner, O. , Lev-Tov A. and Groner, Y. The Runx3 transcription factor regulates development and survival of TrkC dorsal root ganglia neurons. The EMBO Journal. 21:3454-63, 2002.

Gabbay H., Delvolve, I, and Lev-Tov A. Pattern generation in caudal-lumbar and sacrococcygeal segments of the neonatal rat spinal cord. J. Neurophysiol. 88: 732-739, 2002.

Lev-Tov, A. and Delvolve, I. Pattern generation in non limb-moving segments of the mammalian spinal cord. In:Neural Development of Motor Behavior, a special issue of Brain Res. Bull., 53:671-675, 2001.

Delvolve, I, Gabbay, H, and Lev-Tov A The motor output and behavior produced by rhythmogenic sacrocaudal networks in spinal cords of neonatal rats. J. Neurophysiol. 85: 2100-2110, 2001.

Lev-Tov A., Delvolve, I.and Kremer, E. Sacrocaudal afferents induce rhythmic efferent bursting in isolated spinal cords of neonatal rats. J.Neurophysiol. 83: 888-895, 2000.

Kremer, E. and Lev-Tov, A. GABA-receptor independent dorsal root afferents depolarization in the neonatal rat spinal cord. J. Neurophysiol. 79: 2581-2592, 1998.

Kremer, E. and Lev-Tov, A. Localization of the spinal network associated with generation of hindlimb locomotion in the neonatal rat and organization of its transverse coupling system. J. Neurophysiol. 77:1155-1170, 1997.

Lev-Tov A. and O'Donovan, M.J. Spatiotemporal patterns of motoneuron activation in the isolated mammalian spinal cord revealed by calcium imaging. J. Neurophysiol., 74:1324-1334, 1995.

Pinco, M. and Lev-Tov, A. Synaptic transmission between ventrolateral funiculus axons and lumbar motoneurons in the isolated spinal cord of the neonatal rat. J. Neurophysiol. 72:2406-1419, 1994.

Floeter M.K and Lev-Tov A. Excitation of lumbar motoneurons by the medial longitudinal fasciculus in the neonatal rat brainstem spinal cord preparation. J. Neurophysiol, 70:2241-2250 , 1993.

Pinco, M. and Lev-Tov, A. Modulation of monosynaptic excitation in the neonatal rat spinal cord. J. Neurophysiol. 70:1151-1158, 1993.

Pinco, M. and Lev-Tov, A. Synaptic excitation of a-motoneurons by dorsal root afferents in the neonatal rat spinal cord. J. Neurophysiol., 70: 406-417, 1993.

Lev-Tov, A., Lavy, R. and Tal, M. Diverse firing properties of single motor units in the inner and outer portions of the guinea pig anterior digastric muscle. Arch. Oral Biol. 38:169-178, 1993.

Lev-Tov, A. and Pinco, M. In vitro studies of prolonged synaptic depression in the neonatal rat spinal cord. J.Physiol. (Lond.) 447:149-169, 1992.

Konnerth, A., Keller, B.U. and Lev-Tov, A. Patch clamp analysis of excitatory synapses in mammalian spinal cord slices. Pflugers Archiv. 417:285-290, 1990.

Lev-Tov, A., Meyers, D.E.R. and Burke, R.E. GABAB receptors in the cat spinal cord. J. Basic and Clinical Physiol. Pharmacol 1:87-93, 1990.

Lev-Tov, A. Pratt, C.A. and Burke, R.E. Functional organization of the motor unit population of the cat tenuissimus muscle. J.Neurophysiol. 59:1128-1142, 1988.

Lev-Tov, A. Meyers, D.R.E and Burke R.E. Activation of GABAB receptors in the intact mammalian spinal cord mimics the effects of reduced presynaptic calcium influx. Proc. Natl. Acad. Sci. 85:5330-5334, 1988.

Lev-Tov, A. Meyers, D.E.R and Burke, R.E Modification of primary afferent depolarization in cat group Ia afferents following high frequency intra-axonal tetanization of individual afferents. Brain Res. 438:328-330, 1988.

Lev-Tov, A. and Tal, M. The organization and the activity patterns of the anterior and posterior heads of the guinea pig digastric muscle. J.Neurophysiol. 58:496-509, 1987.

Lev-Tov, A. and Fishman, R.H.B. The modulation of transmitter release in motor nerve endings varies with the type of muscle fiber innervated. Brain Res., 363:379-382, 1986.

Fleshman, J.W., Lev-Tov, A. and Burke, R.E. Peripheral and central control of flexor digitorum longus and flexor hallucis longus motoneurons: the basis of functional diversity. Exp. Brain Res., 54:133-149, 1984.

Lev-Tov, A., Pinter, M.J. and Burke, R.E. Post-tetanic potentiation of group Ia EPSPs:Possible mechanisms for differential distribution in MG motor nucleus. J.Neurophysiol. 50:379-398, 1983.

Lev-Tov, A., Miller, J.P., Burke, R.E. and Rall, W. Factors that control the amplitude of EPSPs in dendritic neurons. J. Neurophysiol. 450:399-412, 1983.

Lev-Tov, A., Fleshman, J.W. and Burke, R.E. Primary afferent depolarization and presynaptic inhibition of monosynaptic group Ia EPSPs during post-tetanic potentiation. J. Neurophysiol. 50:413-427, 1983.

Melinek, R., Lev-Tov, A., Meiri, H., Erulkar, S.D. and Rahamimoff, R. Regulatory role of intracellular sodium ion in neurotransmitter secretion. Isr. J. Med. Sci. 18:37-43, 1982.

Burke, R.E., Dum, R.P., Fleshman, J.W., Glenn, L.L., Lev-Tov,A., O'Donovan, M.J. and Pinter, M.J. An HRP study of the relation between cell size and motor unit type in cat ankle extensor motoneurons. J. Comp. Neurol. 209:17-28, 1982.

Rahamimoff, R., Lev-Tov, A. and Meiri, H. Primary and secondary regulation of quantal transmitter release: calcium and sodium .J. Exp. Biol.789:5-18, 1980.

Lev-Tov, A. and Rahamimoff, R. A study of tetanic and post-tetanic potentiation of miniature end plate potentials at the frog neuromuscular junction. J. Physiol. (London) 309:247-273, 1980.